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Abstract— Robot manipulation tasks require on robot mod-
els. When exact physical parameters of the robot are not
available, learning robot models from data becomes an ap-
pealing alternative. Most learning approaches are formulated
in a supervised learning framework and are based on clearly
defined training sets. We propose a method that improves
the learning process by using additional data obtained from
other experiments of the robot or even from experiments with
different robot architectures. Incorporating experiences from
other experiments requires transfer learning that has been
used with success in machine learning. The proposed method
can be used for arbitrary robot model, together with any
type of learning algorithm. Experimental results indicate that
task transfer between different robot architectures is a sound
concept. Furthermore, clear improvement is gained on forward
kinematics model learning in a task-space control task.

I. INTRODUCTION

Robot manipulation tasks ofter require learning robot
models. These models incorporate our knowledge about the
architecture of the robot. When the physical parameters of the
robot are unknown or inaccurate, analytical control methods
fail, since the robot model is unavailable. In such cases,
learning the robot model from data is an appealing alternative
as it requires only samples gained from experiments. Collect-
ing data from experiments is considered to be significantly
easier than obtaining an accurate analytical physical model
of the robot [1]. Inferring robot models form data has a
broad literature [1]–[7]. Most model learning problems are
formulated in standard supervised learning framework, where
the training data consists of inputs associated with labels.
This formulation leads to algorithms where the learning
process is based on unequivocally defined training sets,
acquired either online or offline. We propose an approach
where additional datasets can be used.

The motivation of this paper comes from human learn-
ing. A fundamental difference between human and machine
learning is that robots have no prior knowledge of the world,
whereas humans have at their disposal past experiences, e.g.,
even though the new task has not yet been performed by
the human learner, previous life-experience would certainly
speed up learning. For example, when one has to learn how
to play table tennis, the fact that he uses his hand every day
improves the learning process. Furthermore, if he has done

Botond Bócsi and Lehel Csató are with Faculty of Mathematics and
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Fig. 1: Transfer learning between a Sarcos Master arm (left)
and a Barrett WAM (right).

similar activities before, such as tennis, the improvement will
be more significant.

In this paper, we consider the scenario when the robot uses
its own – or other – past experiences to improve its learning
speed. For example, consider a humanoid robot with two
arms which learned a given task with one of its arms. We
propose a method that helps to learn a similar task with the
other hand based on the knowledge gained from the first task.

The idea of transferring knowledge between different tasks
is not novel, it has been considered in machine learning under
the name of transfer learning [8]–[10]. Transfer learning is
based on the insight that the learning process of a given task
can be improved when some knowledge gained from other
learning problems is reused. In robotics, it has been mainly
applied to improve reinforcement learning tasks as part of
lifelong learning [11] – the general idea that any learning
process must be based on information gained from previously
learned tasks. The method proposed in this paper improves
robot model learning using transfer learning techniques.

The paper is organized as follows: a general introduction
to transfer learning is given in Section I-A, also highlighting
the existing robot learning applications. Then, we present
the prevailing robot model learning approaches we aim to
improve in Section I-B. Section II details the proposed
transfer learning algorithm, while in Section III we show ap-
plications where our method improves robot model learning.
Conclusions and future work are discussed in Section IV.

A. Transfer Learning

The concept of transfer learning does not have a unique
definition, and it has been investigated in different scenarios.
The common feature of all scenarios is that the learning
process is improved by taking additional data beside the
training dataset [8]. In every transfer learning framework a
source task and a target task are associated with the source
and the target domain respectively. The typical procedure
has two steps: first, the source task is learned, then the



“knowledge” from the first step is used to improve the target
task. We mention different transfer learning paradigms.

Inductive transfer learning [12] solves problems where
source and target domains coincide but the tasks are different.
In transductive transfer learning [9], [13] the source domain
and the target domain are different but the same task has to
be solved for both cases.

We classify transfer learning methods based on the princi-
ples with which they transfer knowledge between the tasks.
First, they may transfer knowledge of instances [12] where
parts of the source task set is reused. Second, they may
transfer knowledge of feature representation [9] when a better
task feature representation is found based on the source task.
Third, they may transfer knowledge of parameters [5], [13],
[14] when the estimated parameters of the source model are
used. The main application of the third approach is in a
Bayesian setting, here, the values of the source parameters
can be reused in a natural way by setting them as prior
parameters of the target model [5], [13]–[15].

Transfer learning methods have been applied with success
in text categorization [15], [16], boosting [12], naive Bayes
classification [13], and breast cancer detection [16].

Our approach has similarities to the one of Pan et al. [9].
They use dimensionality reduction to find a common latent
feature space of the source data and task data. Standard
supervised learning algorithms are applied with the latent
feature space representation of the data as inputs and the
true labels as outputs. Their application shows performance
improvements in a wifi localization task (measuring the
strength of wifi signals, when one aims to locate itself in
a building [9]) and binary text classification.

To best of our knowledge there were a few attempts to
apply the transfer learning framework in robot learning. Most
of the approaches used transfer learning in reinforcement
learning tasks. Knowledge transfer was achieved by reusing
instances of data, action-value functions, policies, or full task
models [10], [11]. An early attempt to use transfer learning
in robot model learning is in multi-task learning, where
multiple Gaussian processes have been applied to model
inverse dynamics of a robot arm [5]. To do so, multiple
Gaussian process instances shared the hyper-parameters of
the model.

We propose transfer learning based learning algorithm that
can be applied with several of robot model learning methods
since we do not define a novel learning method but a data
transfer mechanism. Furthermore, the proposed method can
be used for learning any type of robot model, e.g. forward
kinematics, inverse kinematics, inverse dynamics. In what
follows, we provide a short overview of different robot model
learning methods.

B. Learning Robot Models

In robot model learning the approximation of different
robot models is addressed. We enumerate forward kine-
matics, inverse kinematics, inverse dynamics, or operational
space control. A survey on robot model learning is presented
in Nguyen-Tuong and Peters [1].

Forward kinematics is the simplest to approximate from
the aforementioned models. It is a one-to-one function, map-
ping joint coordinates to end-effector positions, i.e., θθθ→ xxx,
where θθθ ∈ Rn and xxx ∈ Rp when the robot has n degrees of
freedom (DoFs) and the operational space (or task-space) is
p dimensional. Learning forward kinematics can be treated
as an ordinary regression problem, and standard methods,
such as neural networks [17] and locally weighted projection
regression (LWPR) [7] were used with success to model it.

A second model is the inverse dynamics model. It ex-
presses the torque that should be applied to obtain a desired
joint configuration. It is again a locally unique mapping from
the joint-space to the torque-space, i.e., θθθ→ τττ. The torque τττ
belongs to an n dimensional space, τττ ∈ Rn, since the model
associates a torque value to every joint. Standard regression
techniques, such as LWPR [2], support vector regression [2],
Gaussian process regression [2], [5], neural networks [3], all
result in accurate models.

A third model, the inverse kinematics, performs a mapping
from end-effector positions xxx to joint coordinates θθθ. This
mapping may not be a one-to-one function when a given end-
effector position can be reached from more than a single joint
configuration. Due to the multiple outputs, inverse kinematics
is an ill-defined function; thus, standard learning methods
fail. To overcome this difficulty, LWPR [6], structured output
learning [4], and paired neural networks have been used [17].

The fourth family of robot models, operational space con-
trol [18], couples inverse kinematics and inverse dynamics
by directly modeling the transformation between the desired
end-effector position and the torque that should be applied to
reach the positions, i.e., xxx → τττ. Learning operational space
control is a novel approach in robot control. Most of the
approaches are kernel-based methods and take advantage of
the flexibility and the good generalization property of these
methods. Gaussian processes [19] and LWPR [20] have also
been used in this context.

The common feature of the above robot model learning
problems is that they need samples. Acquiring these samples
can be difficult, time consuming, or very costly. We propose a
method that helps obtaining samples from past experiences of
the robot, or even from experiences of different robot archi-
tectures. Next, we present how to model data transformation
from other experiments such that it becomes useful in a new
learning task.

II. KNOWLEDGE TRANSFER IN ROBOT LEARNING

We aim to improve the learning process for the previous
robot models based on information transfer from past exper-
iments in the form of additional datasets. In the remainder of
this paper, for simplicity, knowledge transfer in robot model
learning is presented for forward kinematics. However, we
emphasize that our algorithm is not limited to these models
and could equally be applied to all categories from above. For
example, in our experiments we use it for inverse dynamics
learning.

Regardless of the learning framework, a source task – a
task that has already been learned – and a target task – a
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Fig. 2: Transfer learning scheme: first, we obtain a common
low dimensional manifold of the source datasetDDDs and target
dataset DDDt, i.e., dim(MMMs) = dim(MMMt), using dimensional-
ity reduction; then, we find a mapping f() between these
manifolds.

problem that is difficult to learn for some reasons – has to be
defined. For example, it may happen that we have a limited
time access to the target architecture or we want to do as
few operations on it as possible.

We consider the case when a source task has a dataset
DDDs = {(θθθsi , xxx

s
i )}

N

i=1, and we aim to improve the learning of
a target task that has a training setDDDt = {(θθθti , xxx

t
i)}

K

i=1. Since
we consider forward kinematics, we assume the inputs are
joint configurations and the labels are end-effector positions.
The proposed method can be applied in two scenarios: first,
when K is smaller than N, thus, we do not have enough
training data for the target task to obtain an accurate robot
model; second, when it is easier to perform the source task
and then transform it into the target task. We emphasize that
it is not required that the dimension of the data fromDDDs to be
same as the dimension of the data from DDDt. Both the joint-
space dimension and the end-effector space dimension can
be different, i.e., dim(θθθs) 6= dim(θθθt), dim(xxxs) 6= dim(xxxt).

Our algorithm is divided into two steps: first, we find
a low dimensional representation of the datasets DDDs and
DDDt, with the same dimensionality, denoted with MMMs and
MMMt, i.e., dim(MMMs) = dim(MMMt). As a second step, we find
a transformation between the low dimensional manifolds,
i.e., f : MMMs → MMMt. The scheme of the transfer
learning algorithm is presented on Figure 2. We discuss the
calculation of the transformation function f(·) in Section II-
A. In the next two sections we present the two steps of the
algorithm in detail.

A. Dimensionality Reduction

Dimensionality reduction aims to find a lower dimensional
representation of the data such that properties of interest
are preserved, e.g., distance between the data points or
maximum variance [21]. In our framework, we do not put
any restrictions on the selected preserved property. However,
the method must provide a bijective mapping between the
low and high dimensional spaces, since the inverse mapping
is also needed (see Algorithm 1 for details).

In our experiments, we used principal component analysis
(PCA) as the dimensionality reduction method, since our
kinematics data lay on a relatively simple manifold. By
applying PCA, we assume linear relationship between the
low and high dimensional manifolds. First, we center the
data, that is, subtract the mean, then whiten it, that is, divide
with the standard variance. The projection looks as follows

sss = BBBs(ddd
s −µµµs)

ttt = BBBt(ddd
t −µµµt),

where sss ∈MMMs, ttt ∈MMMt, ddds ∈DDDs, and dddt ∈DDDt. The values
µµµs = EEE{DDDs

} and µµµt = EEE{DDDt
} are the means of the original

data, where EEE{·} denotes the expectation operator. Matrices
BBBs and BBBt are transformation matrices obtained such that the
variances of MMMs and MMMt are maximized, for details consult
Lee and Verleysen [21]. Note that the bijective requirement
of the dimensionality reduction method is fulfilled since the
inversion of the projection function is straightforward by
calculating BBB−1

s and BBB−1
t respectively.

An important question is how to set the common dimen-
sions of the manifolds. From a theoretical point of view one
would argue that bigger number of dimensions would lead to
less information loss caused by the dimensionality reduction.
Although this assumption is true in general, experiments
conducted on data originated from robot model learning tasks
show that other properties of the transformation also has to
be taken into account, such as stability or smoothness. In our
experiments, we give some general principals how to chose
the dimension of the manifolds, see Section III-A for details.

B. Manifold Alignment
We model the manifold alignment function as a linear

mapping f :MMMs → MMMt, with

f(sss) = AAAsss, (1)

where AAA ∈ RJ×J is a transformation matrix with J as the
dimension of the manifolds. The definition of the mapping
f(·) is discussed in two cases. In the first case direct
correspondence between the data points is known. By direct
correspondence we mean that DDDs and DDDt contain the same
number of points and the points come in pairs. This setup can
be used, for example, when the same task has been performed
both in the source space and in the target space. A solution
was provided by Wang and Mahadevan [22] who assumed
that f(·) is a linear function and minimized ‖TTT − f(SSS)‖F
where SSS and TTT are matrices formed from the data of MMMs

and MMMt, and ‖ · ‖F is the Frobenius norm. In this paper, we
assume a linear function and minimize the expected loss of
the transformation.

In the second case, there is no direct correspondence
between the points of DDDs and DDDt. They may even contain
different number of points, i.e., |DDDs

| 6= |DDDt
| as discussed

by Pan et al. [9] who minimized the distance between
the distributions of the datasets based on maximum mean
discrepancy. Similarly to their work, we assume Gaussian
distributions and find a transformation that minimizes the
KL distance.



Algorithm 1 Transfer learning for robot models with PCA.

IN: DDDs = {dddsi = (θθθsi , xxx
s
i )}

N

i=1, DDDt = {dddti = (θθθti , xxx
t
i)}

K

i=1

{Obtain MMMs = {sssi}
N
i=1 and MMMt = {ttti}

K
i=1 such as}

sssi = BBBs(ddd
s
i −µµµs) , ∀dddsi ∈DDD

s {see Section II-A}
ttti = BBBt(ddd

t
i −µµµt) , ∀dddti ∈DDD

t {see Section II-A}

AAA = ΣΣΣ−1
ss ΣΣΣts {with direct correspondence}

{OR}
AAA = UUUtΛΛΛ

1/2
t ΛΛΛ−1/2

s UUU>s {with rough alignment}

OUT: BBB−1
t AAASSS+µµµt {SSS is a matrix of all sssi ∈MMMs}

1) Alignment with Direct Correspondence: When direct
correspondence between the datasets is known, we are given
MMMs = {sssi}

N
i=1 and MMMt = {ttti}

K
i=1, with N = K, and we also

know that sssi matches ttti for every i = 1,N. We want to find
the parameter AAA from Equation (1) such that the expectation
of the error of the transformation L(AAA) is minimized, i.e.,

AAA = arg min
AAA

L(AAA),

with

L(AAA) = EEE
{
(ttt−AAAsss)

>
(ttt−AAAsss)

}
= EEE

{
ttt>ttt− 2ttt>AAAsss+ sss>AAA>AAAsss

}
= EEE

{
tr(tttttt>) − 2tr(AAAsssttt>) + tr(AAAssssss>AAA>)

}
= tr

(
ΣΣΣtt − 2AAA

>ΣΣΣts +AAA
>ΣΣΣssAAA

)
, (2)

where ΣΣΣss, ΣΣΣtt, and ΣΣΣts are covariance matrices. The
minimization can be performed by setting the derivative of
L(AAA) from Equation (2) to zero. After differentiation, we get

0 = −2ΣΣΣts + 2AAA
>ΣΣΣss,

AAA = ΣΣΣ−1
ss ΣΣΣts. (3)

The bottleneck in the computation ofAAA is the inversion of the
covariance matrix ΣΣΣss. As long as the number of the DoFs
of the robot is small, the computation of AAA can be done
efficiently [23]. Since ΣΣΣss is a full-rank matrix (we assume
strictly positive definiteness, thus, full-rank), the inversion is
well defined. The pseudo-code of the algorithm is presented
in Algorithm 1.

2) Rough Alignment: Rough alignment is also appealing
since in most cases we do not have points that are paired.
The distance between the distributions defined by the points
of MMMs and MMMt is minimized. The task is now to match the
two distributions defined on manifoldsMMMs andMMMt obtained
from the dimensionality reduction step. In the following, we
also assume that both datasets are Gaussian distributed and
we minimize the distance between the two Gaussians p(MMMs)
and p(MMMt). Defined as the Kullback-Leibler divergence [24],
the divergence has an analytical form when the distributions

are Gaussian:

2KL
(
p(MMMs)‖p(MMMt)

)
= (µµµs −µµµt)

>
ΣΣΣ−1
tt (µµµs −µµµt) +

+tr
(
ΣΣΣssΣΣΣ

−1
tt − III

)
− ln

∣∣∣ΣΣΣssΣΣΣ
−1
tt

∣∣∣ , (4)

where µµµs = EEE{sss} and µµµt = EEE{ttt} are the means of MMMs

and MMMt. We use the linearity assumption presented in
Equation (1), MMMt = AAAMMMs. After centering the data, i.e.,
subtracting the mean from every data point, µµµs = µµµt = 000, the
first term from the expression in (4) vanishes. The expression
from Equation (4) achieves its minimum zero, when both the
second term and the third term is equal to zero, i.e., when
ΣΣΣssΣΣΣ

−1
tt = III, leading to

ΣΣΣtt = AAAΣΣΣssAAA
>. (5)

This expression is quadratic in AAA and does not have a unique
solution. To see the non-uniqueness but, nonetheless, obtain
a constructive solution, we apply the eigenvalue decompo-
sition of the covariance matrices. After the decomposition,
Equation (5) looks as follows

UUUtΛΛΛtUUU
>
t = AAAUUUsΛΛΛsUUU

>
sAAA
>, (6)

where UUUs and UUUt are rotation matrices, i.e., UUUsUUU
>
s = III, and

ΛΛΛs and ΛΛΛt are diagonal matrices with the eigenvalues of
ΣΣΣss and ΣΣΣtt, respectively. Equation (6) reveals that there are
no constrains on how the dimensions of the two manifolds
correspond to each other. The matrixAAA may contain any per-
mutation of the rows, thus, we can construct solutions where
we explicitly define the correspondence of the dimensions.
So far, we did not assume anything about how the dimensions
of the Gaussian variable correspond to each other. We assume
that they correspond according to the increasing order of their
variance (intuitively, in practice it means that we map joint to
each other with similar variance). This constraint is achieved
by arranging the columns of ΛΛΛs, UUUs and ΛΛΛt, UUUt such that
the eigenvalues are in an increasing order. One can see that
an AAA that satisfies Equation (6) has the following form

AAA = UUUtΛΛΛ
1/2
t ΛΛΛ−1/2

s UUU>s . (7)

Note that since in our experiments we used PCA in the
dimension reduction step, the data are already aligned along
the direction of their variance. Thus, the rotational matrices
UUUs and UUUt from this step do not do any rotation and contain
zeros outside their diagonals.

The computational complexity of AAA is the same as the
eigenvalue decompositions of the covariance matrices since
the inversion of a diagonal matrix is straightforward [23].
The Eigenvalue decomposition of positive definite matrices
can also be done efficiently [23]. The pseudo-code of the
algorithm is presented in Algorithm 1.

III. EXPERIMENTS

We conducted experiments on robots with different ar-
chitectures to emphasize two features of our method. First,
the information loss induced by dimensionality reduction is
not significant. Second, the expressive power of the linear
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Fig. 5: The error of the direct correspondence transformation,
measured in mean square error (MSE), applied for inverse
dynamics learning. The dimension of the source dataset is
dim(DDDs) = 32 (joint angle, joint velocity, joint acceleration,
torque value for every eight joint) and the dimension of the
target dataset is dim(DDDt) = 28 (the same values for seven
joint). The error decreases as the dimension of the latent
manifold increases but after a threshold (above 21) only the
noise process is modeled.

function used for manifold alignment is sufficiently good
to achieve good performance. The experiments were for
tracking control learning and inverse dynamics learning.

A. Improve Inverse Dynamics with Direct Correspondence

The aim of this experiment is not to enhance any learning
process in the target task, but to show that knowledge transfer
is conceptually sound and can be done with good accuracy.

The experiment was performed on a simulated Sarcos
Master arm [2] with eight DoFs and a simulated Barrett
WAM arm [2] with seven DoFs – see Figure 1. The source
task was task-space tracking of a trefoil knot (Figure 4c)
while we wanted to see if the inverse dynamics learning
of the Barrett arm can be improved. The target task was
also to track a trefoil knot. The source and the target figures
had different scales and were placed in different regions of
the Euclidean space. We used the analytical controllers of
the robots to collect data for both tasks. The data collection
process can be replaced by any other process, e.g., a task
shown by a human in the case of imitation learning.

The dimension of the source dataset was dim(DDDs) = 32
(joint angle, joint velocity, joint acceleration, torque value
for every eight joint) and the dimension of the target dataset
was dim(DDDt) = 28 (the same values for seven joint). We set
the low dimensional representation to 18, i.e., dim(MMMs) =
dim(MMMt) = 18. After dimensionality reduction, almost all
of the variance1 has been preserved in the low dimensional
manifold for each task since the last couple of eigenvalues
of the data were very close to zero.

After running each task with the same speed for one
minute, we had data points with direct correspondence. The

1The loss of variance was below numerical precision of Matlab.

samples were collected at 480Hz with the Master arm and
at 500Hz with the Barrett arm. Cubic spline interpolation
was used both in the joint-space and torque-space to obtain
direct point correspondence. We applied the method from
Section II-B.1 on this dataset. Figure 3a and Figure 3a shows
that after estimating AAA with Equation (3), we could transfer
joint positions from the source dataset (red) to the target
dataset (blue) with good efficiency (dashed green). For torque
values the transformations are shown on Figures 4a-4b.

To see how much information can be caught if we do
not assume direct correspondence, but only distribution min-
imization, we applied the method from Section II-B.2 to
this dataset. These result are presented in Figure 3c and
Figure 3d. It can be seen that the transformation of the joint
values is not accurate, but it captures the correct mean and
variance of the transferred data, as expected.

An important question is how to chose the dimension
of the latent manifold. The accuracy of the transformation,
measured in the mean square error (MSE), is shown on
Figure 5 as a function of dimension of the latent manifold2. It
can be seen that after a given value (21 in our experiments),
the accuracy does not change. This phenomena means that
dimensions above 21 models the noise process in the data.
This noise process can be a result, e.g., of inaccurate mea-
surements. As a result, setting the dimension of the latent
manifold to a smaller value than the maximum possible leads
to noise reduction. We propose to set this dimension of the
manifolds to the maximum value where the noise is not
modeled.

B. Direct Figure Transfer with Direct Correspondence

In this experiments, we used direct correspondence to
match data for tracking control learning (kinematics data).
Then, transferred a figure directly between two different
architectures. To show that it is possible to transfer knowl-
edge between robots with different DoFs, we enabled four
joint of the Barrett arm and five joints of the Master arm3.
Both source and target tasks were to do task-space tracking
of a trefoil knot (Figure 4c). We again used the analytical
controllers of the robots to collect data for both tasks. The
source and the target figures had different scales and were
placed in different regions of the Euclidean space. We set the
dimension of the low dimensional representation to seven,
i.e., dim(DDDs) = 8, dim(DDDt) = 7 (joint coordinates and end-
effector coordinates), and dim(MMMs) = dim(MMMt) = 7.

We used a figure-eight test trajectory with the Master arm
(using the analytical controller) that was placed inside the
space defined by the trefoil knot. After transforming the joint-
space trajectories and following the transformed trajectories
with the Barrett arm, the figure eight presented in Figure 6a
has been obtained. Note that showing a desired figure eight

2The mean square error is relatively small (10−3) since some joints have
been used to perform the task, thus, their value was very close to zero. This
property pulls the error closer to zero but does not affect the trend as a
function of the dimensions.

3We experimented with more joints enabled as well, however, no im-
provement on the tracking accuracy has been observed.
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(a) Joint 1.
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(b) Joint 2.
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(c) Joint 1.
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Fig. 3: Using direct correspondence (a) and (b), the method could find an accurate mapping (dashed green curves) from
the source joints (red curves) to the target joints (blue curves) for all DoF. With rough alignment (c) and (d) the method
could not find an accurate mapping from the source joints to the target joints. However, the mean and the variance for all
the target joints are well estimated, as expected.
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(a) Torque 5.
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Fig. 4: Using direct correspondence (a) and (b) shows the transferred torque values (green dashed curves) from the Master
arm (red curves) to the Barrett arm (blue curves) when applied for inverse dynamics. The transformation is accurate enough.

in Figure 6a may be misleading since there is no ground
truth of task transformation. We defined the desired figure
eight as the figure tracked by the analytical controller of the
Barrett arm with the same initial posture as the trefoil knot.

C. Speed-up Tracking Control Learning using Different
Robot Architectures

In this experiment, we used the same two robot archi-
tectures as in the previous experiment. We used the source
dataset from the previous experiment (the trefoil knot). The
target task was to speed-up the tracking control learning of
the Barret arm. We set the dimension of the low dimen-
sional representation again to seven, thus, dim(DDDs) = 8,
dim(DDDt) = 7, and dim(MMMs) = dim(MMMt) = 7.

The tracking control algorithm was based on the the for-
ward kinematics model of the robot. The forward kinematics
model has been approximated with sparse online Gaussian
processes and used to perform task-space control [25].

Without transfer learning, it takes from 20 seconds to four
minutes to learn this model online [25]. After performing
quasi-random movements for three seconds with the Barrett
arm, we applied the distribution alignment approach pre-
sented in Section II-B.2 between the Master arm dataset
and the collected one. We stopped the learning process
after the three seconds of burn-in period and used the
transferred points to further train the forward kinematics
model. Figure 6b shows the figure eight as a result. The
shape eight is not perfect, however, we needed only three

seconds of learning and the transfer algorithm. We repeated
the experiment but now the learning process was not stopped
after three seconds, only the Master arm dataset has been
used to gain additional training samples. Figure 6c shows that
if learning is not stopped an accurate figure eight tracking
is achievable after three seconds of learning and the transfer
algorithm. The use of the Master arm dataset was necessary
in the experiment. Based only on the data collected during
the first three seconds of interaction, the arm failed to learn
the forward kinematics model.

IV. DISCUSSION

We conclude that transfer learning is a natural way of
extending the limits of standard supervised, unsupervised,
or reinforcement learning frameworks. Experiments show
that once a mapping between two robot architectures is
known, direct task transfer between these robots is possible.
Furthermore, significant improvement on learning forward
kinematics can be achieved when datasets from past experi-
ments are also considered.

The presented method has limitations. When rough align-
ment is applied, assuming Gaussian distributed data may be
too restrictive and more complex distribution should also be
considered. This extension would come at the cost of in-
creasing computational complexity or even losing analytical
tractability. Another possible improvement may be to take
into account the sequential nature of data and use this prop-
erty in the distribution minimization process. Considering
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(a) Direct task transfer from the Master arm
to the Barrett arm.
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(b) Figure eight after data transfer without
further learning.
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(c) Figure eight after data transfer with further
learning.

Fig. 6: Tracking control results after three seconds of online learning, then, using the transfer learning algorithm: (a) when
no further online model learning is allowed after data transfer; (b) when online model learning is allowed after data transfer.
(c) The figure eight drawn by the Master arm has been directly transferred to the Barrett arm.

constrained distribution minimization would almost certainly
lead to analytical intractability, thus, slower algorithm.

Experiments show that the class of linear functions has a
good expressive power to model the relationship between the
manifolds. Releasing this linearity assumption and consider-
ing more complex relationships may lead to over-fitting.

To see the limitations of the linear mapping, experiments
should be conducted on more complex (humanoid) robots
with other robot models, e.g., inverse kinematics or dy-
namics models, as well. It is important to see where the
transformation breaks down, i.e., how different the robot
architectures can still have a meaningful transformation.
Transferring knowledge between different models, e.g., be-
tween kinematics and dynamics models, also appears to be
a challenging task.
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